精英家教网 > 高中数学 > 题目详情
4.已知直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)当α=$\frac{π}{4}$时,求直线L与圆C交点的中点坐标;
(2)证明:直线L与圆C相交,并求最短弦的长度.

分析 (1)先求出当α=$\frac{π}{4}$,直线L为:y=x-1,圆C:x2+y2=4,联立$\left\{\begin{array}{l}{y=x-1}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,得2x2-2x-3=0,利用韦达定理能求出直线L与圆C交点的中点坐标为($\frac{1}{2},-\frac{1}{2}$).
(2)直线L过定点P(1,0),圆C是圆心C(0,0),半径r=2的圆,由|PC|=1<2=r,能证明直线L与圆C相交.当相交弦与PC垂直时,相交弦最短.

解答 解:(1)∵直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),
∴$\frac{y}{x-1}$=tanα,
当α=$\frac{π}{4}$,直线L为:y=x-1,
∵圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),∴x2+y2=4,
∴圆C是圆心C(0,0),半径r=2的圆,
联立$\left\{\begin{array}{l}{y=x-1}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,得2x2-2x-3=0,
直线L与圆交于A(x1,y1),B(x2,y2),
则x1+x2=1,y1+y2=(x1-1)+(x2-1)=1-2=-1,
∴直线L与圆C交点的中点坐标为($\frac{1}{2},-\frac{1}{2}$).
证明:(2)∵直线L:$\frac{y}{x-1}$=tanα,∴直线L过定点P(1,0),
∵圆C是圆心C(0,0),半径r=2的圆,
∴|PC|=1,∵|PC|=1<2=r,
∴直线L与圆C相交.
当相交弦与PC垂直时,相交弦最短,
∴最短弦的长度dmin=2$\sqrt{{r}^{2}-|PC{|}^{2}}$=2$\sqrt{3}$.

点评 本题考查直线与圆相交弦中点坐标的求法,考查直线与圆垂直的证明,考查相交弦最短时其长度的求法,是中档题,解题时要认真审题,注意点到直线距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$+log2(2x+4)的定义域为(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等比数列{an}的前n项和,a1=30,8S6=9S3,设Tn=a1a2a3…an,则使Tn取得最大值的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程是ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线L的参数方程为$\left\{\begin{array}{l}x=5+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数)
(1)求曲线C的直角坐标方程与直线L的普通方程
(2)设曲线C与直线L相交于P,Q两点,求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、分别是BD和AE的中点,
①AD⊥MN;      ②MN∥面CDE;
③MN∥CE;      ④MN、CE异面.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a1=-3,a2=-6,则a4的值为(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=cos2x+sinxcosx-1的最小正周期是π,单调递增区间是[kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则双曲线C2的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

同步练习册答案