¶ÔÓÚÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»ÀàËƵģ¬¹æ¶¨{¡÷2an}ΪÊýÁÐ{an}µÄ¶þ½×²î·ÖÊýÁУ¬ÆäÖС÷2an=¡÷an+1-¡÷an£¨n¡ÊN*£©£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=3n2-5n£¨n¡ÊN*£©£¬ÊÔÖ¤Ã÷{¡÷an}ÊǵȲîÊýÁУ»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¨n¡ÊN*£©£¬Áîbn=
an
2n
£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¼Çcn=
a1(n=1)
2n-1
¡÷an
(n¡Ý2£¬n¡ÊN*
£¬ÇóÖ¤£ºc1+
c2
2
+¡­+
cn
n
£¼
17
12
£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒâ¡÷an=an+1-an=£¨n+1£©2-£¨n+1£©-n2+n=5n-4£¬ËùÒÔ¡÷an+1-¡÷an=6£®ÓÉ´ËÄܹ»Ö¤Ã÷{¡÷an}ÊǵȲîÊýÁУ»
£¨¢ò£©ÓÉ¡÷2 an-¡÷an+1+an=-2n£¬Öª¡÷an-an=2n£®ÓÉ´ËÈëÊÖÄܹ»Çó³öÊýÁÐ{an}µÄͨÏʽ£¬´Ó¶øÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ó£©ÓÉan=n•2n-1£¬cn=
a1(n=1)
2n-1
¡÷an
(n¡Ý2£¬n¡ÊN*)
=
1(n=1)
2n-1
an+1-an
(n¡Ý2£¬n¡ÊN*)
=
1(n=1)
1
n+2
(n¡Ý2£¬n¡ÊN*)
£¬µ±n¡Ý2£¬n¡ÊN*ʱ£¬
cn
n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
£¬´Ó¶ø¿ÉÖ¤£®
½â´ð£º½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣺¡÷an=an+1-an=3£¨n+1£©2-5£¨n+1£©-3n2+5n=6n-2£®£¨2·Ö£©
¡à¡÷an+1-¡÷an=6
¡àÊýÁÐ{¡÷an}ÊÇÊ×ÏîΪ4£¬¹«²îΪ6µÄµÈ²îÊýÁУ®£¨3·Ö£©
£¨¢ò£©ÓÉ¡÷2an-¡÷an+1+an=-2n£¬¡à¡÷an+1-¡÷an-¡÷an+1+an=-2n£¬?¡÷an-an=2n£®
¶ø¡÷an=an+1-an£¬¡àan+1-2an=2n£¬£¨5·Ö£©
¡à
an+1
2n+1
-
an
2n
=
1
2
£¬¼´bn+1-bn=
1
2
£¬£¨6·Ö£©
¡àÊýÁÐ{bn}¹¹³ÉÒÔ
1
2
ΪÊ×Ï
1
2
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¼´bn=
n
2
£®£¨7·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©Öª
an
2n
=
n
2
£¬Ôòan=n•2n-1£¬
¡àc=
a1(n=1)
2n-1
¡÷an
(n¡Ý2£¬n¡ÊN*
=
1(n=1)
2n-1
an+1-an
(n¡Ý2£¬n¡ÊN*
=
1(n=1)
1
n+2
(n¡Ý2£¬n¡ÊN*
£¨9·Ö£©
¡àµ±n¡Ý2£¬n¡ÊN*ʱ
cn
n
=
1
n(n+2)
=
1
2
£¨
1
n
-
1
n+2
£©£¬
¡àc1+
c2
2
++
cn
n
=1+
1
2
[£¨
1
2
-
1
4
£©+£¨
1
3
-
1
5
£©+£¨
1
4
-
1
6
£©++£¨
1
n-1
-
1
n+1
£©+£¨
1
n
-
1
n+2
£©]
=1+
1
2
£¨
1
2
+
1
3
-
1
n+1
-
1
n+2
£©£¼1+
1
2
£¨
1
2
+
1
3
£©=
17
12
£®
µ±n=1ʱ£¬c1=1£¼
17
12
£¬ÏÔÈ»³ÉÁ¢
¡àc1+
c2
2
++
cn
n
£¼
17
12
£®£¨12·Ö£©
µãÆÀ£ºµÚ£¨¢ñ£©Ì⿼²éµÈ²îÊýÁеÄÖ¤Ã÷£¬½âÌâʱҪעÒâµÈ²îÊýÁÐÐÔÖʵĺÏÀíÔËÓ㻵ڣ¨¢ò£©Ì⿼²éÊýÁÐͨÏʽµÄÇó½â·½·¨£¬½âÌâʱҪעÒâ¹¹Ôì·¨µÄºÏÀíÔËÓ㻵ڣ¨¢ó£©Ì⿼²éÊýÁÐÇ°nÏîºÍµÄÖ¤Ã÷£¬½âÌâʱҪעÒâÁÑÏîÇóºÍ·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan}ΪÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¬ÇÒk¡ÊN*£¬k¡Ý2£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=
5
2
n2-
13
2
n£¨n¡ÊN*£©£¬ÊÔÖ¤Ã÷{¡÷an}ÊǵȲîÊýÁУ»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-an+1+an=-2n£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¼Çbn=
a1(n=1)
2n-1
¡÷an
(n¡Ý2£¬n¡ÊN*)
£¬ÇóÖ¤£ºb1+
b2
2
+¡­+
bn
n
£¼
17
12
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan}ΪÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¬ÇÒk¡ÊN*£¬k¡Ý2£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=Êýѧ¹«Ê½n2-Êýѧ¹«Ê½n£¨n¡ÊN*£©£¬ÊÔÖ¤Ã÷{¡÷an}ÊǵȲîÊýÁУ»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-an+1+an=-2n£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¼Çbn=Êýѧ¹«Ê½£¬ÇóÖ¤£ºb1+Êýѧ¹«Ê½+¡­+Êýѧ¹«Ê½£¼Êýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º0117 ÆÚÖÐÌâ ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÊýÁÐ{an}£¬¹æ¶¨ÊýÁÐ{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨Îª{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖУ¬ÇÒ¡£
£¨1£©
£¨2£©ÈôÊýÁеÄÊ×ÏÇÒÂú×ã £¬ÇóÊýÁм°µÄͨÏʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÅжÏÊÇ·ñ´æÔÚ×îСֵ£¬Èô´æÔÚÇó³öÆä×îСֵ£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêËÄ´¨Ê¡Ã¼É½Êи߿¼Êýѧ¶þÄ£ÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»ÀàËƵģ¬¹æ¶¨{¡÷2an}ΪÊýÁÐ{an}µÄ¶þ½×²î·ÖÊýÁУ¬ÆäÖС÷2an=¡÷an+1-¡÷an£¨n¡ÊN*£©£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=3n2-5n£¨n¡ÊN*£©£¬ÊÔÖ¤Ã÷{¡÷an}ÊǵȲîÊýÁУ»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¨n¡ÊN*£©£¬Áîbn=£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¼Çcn=£¬ÇóÖ¤£ºc1++¡­+£¼£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸