精英家教网 > 高中数学 > 题目详情
1.正三棱锥的顶点都在同一球面上.若该棱锥的高为3,底面边长为3,则该球的表面积为(  )
A.B.C.16πD.$\frac{32π}{3}$

分析 设P-ABC的外接球心为O,则O在高PH上,延长AH交BC于D点,则D为BC中点,连接OA.等边三角形ABC中,求出AH=$\sqrt{3}$,然后在Rt△AOH中,根据勾股定理建立关于外接球半径R的方程并解之得R,用球的表面积公式可得P-ABC的外接球的表面积.

解答 解:设P-ABC的外接球球心为O,则O在高PH上,
延长AH交BC于D点,则D为BC中点,连接OA,
∵等边三角形ABC中,H为中心,
∴AH=$\sqrt{3}$
设外接球半径OA=R,则OH=3-R
在Rt△AOH中,根据勾股定理得:OH2+AH2=OA2
即(3-R)2+3=R2,解之得R=2
∴P-ABC的外接球的表面积为:S=4πR2=16π
故选C.

点评 本题给出正三棱锥的底面边长和高,求它的外接球表面积,着重考查了正三棱锥的性质和球内接多面体等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数y=loga(x+1)(a>0,a≠1)的图象过定点,则x值为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.假设关于某设备使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
试求:(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计使用年限为10时,维修费用是多少?
(参考公式)$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$,其中$\overline{x}=\frac{1}{n}\sum_{i=1}^n{x_i}$,$\overline{y}=\frac{1}{n}\sum_{i=1}^n{y_i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(Ⅰ)求证:直线BD1∥平面PAC;
(Ⅱ)求证:平面PAC⊥平面BDD1
(Ⅲ)求直线PB1与平面PAC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)解不等式$\frac{{x}^{2}-x-6}{x-1}$>0
(Ⅱ)设a>0,b>0,c>0,且a+b+c=1,求证($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线的点斜式方程是$y-2=-\sqrt{3}(x-1)$,那么此直线的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数?(x)=$\frac{1}{x+2}$的定义域是(-∞,-2)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在四面体ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,点M在AB上,且AM=$\frac{2}{3}$AB,点N是CD的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

查看答案和解析>>

同步练习册答案