精英家教网 > 高中数学 > 题目详情
(1)(如图1)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=1,过线段EF上的点P分别作DC,AD的垂线,垂足为M,N,延长NP交BC于Q,试写出矩形PMDN的面积y与FQ的长x之间的函数关系,并求出y的最大值.
(2)(如图2)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=x,设多边形的面积为y,当x为何值时,多边形AEFCD的面积最小?
分析:(1)根据图象中的平行关系,确定矩形的边长,进而可求面积,由此可得面积的最值;
(2)确定多边形AEFCD的面积,利用基本不等式可求最值.
解答:解:(1)由题意,∵PQ∥BE,∴
x
1
=
PQ
3
,∴PQ=3x,∴PN=4-3x
∵DN=4-AN=4-(1-x)=3+x,
∴矩形PMDN的面积y=(4-3x)(3+x)(0≤x≤1)
∴y=-3(x+
5
6
)
2
+
169
12

∵0≤x≤1,∴x=0时,ymax=12;
(2)多边形AEFCD的面积等于正方形的面积减去三角形的面积,所以y=16-
1
2
(4-x)x
1
2
(4-x)x≤
1
2
(
4-x+x
2
)
2
=2(当且仅当x=2时,取等号)
∴y≥16-2=14
∴x=2时,ymin=14
点评:本题考查面积的计算,考查函数模型的构建,考查函数最值的求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图1,在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE=CF=CP=1,今将△BEP、△CFP分别沿EP、FP向上折起,使边BP与边CP所在的直线重合(如图2),B、C折后的对应点分别记为B、C1
(1)求证:PF⊥平面B1EF;
(2)求AB1与平面AEPF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
2
2

(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)(如图1)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=1,过线段EF上的点P分别作DC,AD的垂线,垂足为M,N,延长NP交BC于Q,试写出矩形PMDN的面积y与FQ的长x之间的函数关系,并求出y的最大值.
(2)(如图2)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=x,设多边形的面积为y,当x为何值时,多边形AEFCD的面积最小?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市如东高中高一(上)期中数学试卷B(解析版) 题型:解答题

(1)(如图1)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=1,过线段EF上的点P分别作DC,AD的垂线,垂足为M,N,延长NP交BC于Q,试写出矩形PMDN的面积y与FQ的长x之间的函数关系,并求出y的最大值.
(2)(如图2)在边长为4的正方形ABCD中,E、F分别是边AB,BC上的点,且AE=BF=x,设多边形的面积为y,当x为何值时,多边形AEFCD的面积最小?

查看答案和解析>>

同步练习册答案