分析 由题意可得,命题p和命题q一个为真命题,另一个为假命题.先求得当p真q假时,实数m的取值范围,以及当p假q真时,实数m的取值范围,再把这两个范围取并集,即得所求.
解答 解:由题意若p∨q为真命题,p∧q为假命题,可得,命题p和命题q一个为真命题,另一个为假命题.
若p是真命题,:?x∈R,sinx+cosx>m恒成立,可得$\sqrt{2}sin(x+\frac{π}{4})$>m恒成立,即 m<-$\sqrt{2}$,故实数m的取值范围为(-∞,-$\sqrt{2}$).
若命题q是真命题,?x∈R,y=(2m2-m)x为增函数,则有2m2-m>1,
解得 m>1,或m<$-\frac{1}{2}$.
当p真q假时,实数m的取值范围为:∅;
当p假q真时,实数m的取值范围为:[-$\sqrt{2}$,-$\frac{1}{2}$)∪(1,+∞),
综上,所求的实数m的取值范围为:[-$\sqrt{2}$,-$\frac{1}{2}$)∪(1,+∞),
点评 本题主要考查复合命题的真假,一元二次不等式的解法,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-3,2] | B. | [-3,2) | C. | (-3,2) | D. | (-3,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 | D. | x2-3y2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 对任意x∈R,都有f(x)>0 | B. | 存在x∈R,使f(x)>0 | ||
C. | 存在x∈R,使f(x)≥0 | D. | 对任意x∈R,都有f(x)≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+y-4=0 | B. | 2x+y+4=0 | C. | x-2y+3=0 | D. | x-2y-3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com