精英家教网 > 高中数学 > 题目详情
9.已知函数f(2x+3)的定义域为(0,1),求y=f(2x-1)的定义域为(2,3).

分析 先求出y=2x+3的值域,即y=2x-1的范围,解不等式从而求出x的范围即可.

解答 解:由题意得:
2x+3∈(3,5),
∴3<2x-1<5,
解得:2<x<3,
故答案为:(2,3).

点评 本题考查了抽象函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x-1|,x∈R.
(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{x+2}{x-1}$(x≠1)在区间[2,5)上的最大值、最小值分别是(  )
A.$\frac{7}{4}$,4B.无最大值,最小值7
C.4,0D.最大值4,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin4xcosφ+sinφ-2sinφsin22x(0<φ<π)的图象关于y轴对称.
(I)求函数f(x)的最小正周期与φ的值;
(Ⅱ)若函数y=g(x)的图象是由函数y=f(x)的图象上所有的点向左平行移动$\frac{π}{6}$个单位内而得到,且g(x)在区间(0,m)内是单调函数,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.利用二分法求$\root{3}{3}$的近似值(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{{log}_2}x,x>0}\end{array}}$,则函数y=f(f(x))-1的所有零点构成的集合为{-1,1,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有以下三个案例:
案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;
案例二:某公司有员工800人:其中高级职称的160人,中级职称的320人,初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;
案例三:从某校1000名学生中抽10人参加主题为“学雷锋,树新风”的志愿者活动.
(1)你认为这些案例应采用怎样的抽样方式较为合适?
(2)在你使用的分层抽样案例中写出抽样过程;
(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的号码为L(编号从0开始),那么第K组(组号K从0开始,K=0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L+31K的后两位数.若L=18,试求出K=3及K=8时所抽取的样本编号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$lo{g}_{\frac{1}{2}}({x}^{2}-5x+17)$的值域为(-∞,log${\;}_{\frac{1}{2}}$$\frac{43}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是(  )
A.x-2y+1=0B.2x-y-1=0C.x-y+3=0D.x-y-3=0

查看答案和解析>>

同步练习册答案