【题目】已知函数在处取得极值,若,则的最小值是( )
A. 15 B. -15 C. 10 D. -13
【答案】D
【解析】
令导函数当x=2时为0,列出方程求出a值;求出二次函数f′(n)的最小值,利用导数求出f(m)的最小值,它们的和即为f(m)+f′(n)的最小值.
∵f′(x)=﹣3x2+2ax
函数f(x)=﹣x3+ax2﹣4在x=2处取得极值
∴﹣12+4a=0
解得a=3
∴f′(x)=﹣3x2+6x
又n∈[﹣1,1]时,f′(n)=﹣3n2+6n为单增函数,
∴当n=﹣1时,f′(n)最小,最小为﹣9
当m∈[﹣1,1]时,f(m)=﹣m3+3m2﹣4
f′(m)=﹣3m2+6m
令f′(m)=0得m=0,m=2,∴f(m)在[﹣1,0]单减,在[0,1]单增,
所以m=0时,f(m)最小为﹣4
故f(m)+f′(n)的最小值为﹣9+(﹣4)=﹣13
故选:D.
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)画出f(x)的图像,并指出f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).
(1)求关于的函数关系式;
(2)当时,怎样设计能使总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数,),以为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设,直线交曲线于两点,是直线上的点,且,当最大时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+c,其中b,c∈R.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为正数,且a1+2a2=5,4a=a2a6.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com