精英家教网 > 高中数学 > 题目详情

等差数列{an}中,a1+a2+…+a50=200,a51+a52+…+a100=2700,则a1等于


  1. A.
    -1221
  2. B.
    -21.5
  3. C.
    -20.5
  4. D.
    -20
C
分析:根据条件所给的两个等式相减,得到数列的公差,再根据前50项的和是200,代入求和公式做出首项,题目给出的这样的条件,可以解决等差数列的一系列问题.
解答:∵a1+a2+…+a50=200 ①
a51+a52+…+a100=2700 ②
②-①得:50×50d=2500,
∴d=1,
∵a1+a2+…+a50=200,
∴na1+n(n-1)d=200,
∴50a1+25×51=200,
∴a1=-20.5,
故选C.
点评:等差数列可以通过每隔相同个数的项取一个构造新数列,构造出一个新的等差数列数列,从而求出数列的通项公式.这类问题考查学生的灵活性,考查学生分析问题及运用知识解决问题的能力,这是一种化归能力的体现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案