精英家教网 > 高中数学 > 题目详情

(文)已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为数学公式的直线,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的标准方程;
(Ⅱ)过圆心M的直线交抛物线C于P、Q两点,问数学公式是否为定值,若是定值,求出该定值.

解:(Ⅰ)因为=OA•cos60°=2×=1,即p=2,所以抛物线C的方程为y2=4x
设⊙M的半径为r,则r=×=2,所以⊙M的方程为(x-2)2+y2=4
(Ⅱ)M(2,0),设P(x1,y1),Q(x2,y2),
(1)当PQ斜率不存在时,P(2,2),Q(2,-2),则=x1x2+y1y2=-4
(2)当PQ斜率存在时,设PQ的方程为y=k(x-2)(k≠0),消y得k2x2-(4k2+4)x+4k2=0
所以x1+x2=,x1x2=4,
因为y12=4x1,y22=4x2,所以y12y22=16x1x2=64,故y1y2=-8
所以=x1x2+y1y2=-4
所以为定值,该值为-4.
分析:(Ⅰ)根据=OA•cos60°,可求出p的值,从而求出抛物线方程,求出圆心和半径可求出⊙M的方程;
(Ⅱ)分类讨论,设出直线方程代入抛物线方程,利用韦达定理及向量的数量积公式,即可求得结论.
点评:本题考查抛物线与圆的方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为
π
3
的直线,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的标准方程;
(Ⅱ)过圆心M的直线交抛物线C于P、Q两点,问
OP
OQ
是否为定值,若是定值,求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年济宁质检文)(14分)

   已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为

(1)求椭圆C的标准方程;

(2)过椭圆C的右焦点F作直线l交椭圆CAB两点,交y轴于M点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年上虞市质检一文)已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物

线的焦点,离心率等于 

(I)求椭圆C的标准方程;

(II)过椭圆C的右焦点作直线l交椭圆CAB两点,交y轴于M点,若为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东聊城市东阿县曹植培训学校高三(上)12月月考数学试卷(解析版) 题型:解答题

(文)已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为的直线,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的标准方程;
(Ⅱ)过圆心M的直线交抛物线C于P、Q两点,问是否为定值,若是定值,求出该定值.

查看答案和解析>>

同步练习册答案