精英家教网 > 高中数学 > 题目详情
15.已知x、y∈(-$\sqrt{2}$,$\sqrt{2}$),且x•y=1,则$\frac{2}{2-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$的最小值为(  )
A.$\frac{20}{7}$B.$\frac{12}{7}$C.$\frac{16+4\sqrt{2}}{7}$D.$\frac{16-4\sqrt{2}}{7}$

分析 利用柯西不等式可得(m+n)($\frac{{a}^{2}}{m}$+$\frac{{b}^{2}}{n}$)=(a+b)2.由题意,$\frac{2}{2-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$=$\frac{2}{2-{x}^{2}}$+$\frac{2}{2-\frac{1}{2}{y}^{2}}$≥$\frac{(\sqrt{2}+\sqrt{2})^{2}}{(2-{x}^{2})+(2-\frac{1}{2}{y}^{2})}$,即可得出结论.

解答 解:利用柯西不等式可得(m+n)($\frac{{a}^{2}}{m}$+$\frac{{b}^{2}}{n}$)=(a+b)2
由题意,$\frac{2}{2-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$=$\frac{2}{2-{x}^{2}}$+$\frac{2}{2-\frac{1}{2}{y}^{2}}$≥$\frac{(\sqrt{2}+\sqrt{2})^{2}}{(2-{x}^{2})+(2-\frac{1}{2}{y}^{2})}$=$\frac{8}{4-({x}^{2}+\frac{1}{2}{y}^{2})}$
≥$\frac{8}{4-\sqrt{2}xy}$=$\frac{8}{4-\sqrt{2}}$=$\frac{16+4\sqrt{2}}{7}$.
故选:C.

点评 本题考查柯西不等式的运用,考查求最小值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若在区间[0,2]中随机地取两个数,则这两个数中较小的数小于$\frac{1}{2}$的概率是$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的中心在坐标原点O,焦点在x轴上,长轴长为2$\sqrt{2}$,离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆环C交于A,B两点,坐标原点O到直线l的距离为1,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{x+2}{x+1}$,指出f(x)的单调区间,并证明f(x)在其单调区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{2{x}^{2}-x+1}{2x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C1的顶点、椭圆C2和双曲线C3的中心都在坐标原点,并且它们都经过直线y=$\frac{1}{2}$x与直线y=x-1的交点,又在y轴上都有一个公共的焦点,求抛物线C1、椭圆C2和双曲线C3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等比数列{an}的前n项和为Sn=a•2n+a-2,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知{an}是递减数列,且对任意n∈N*,都有an=n(λ-n),则实数λ的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-4}$=1表示双曲线,命题q:$\frac{{x}^{2}}{m+2}$+$\frac{{y}^{2}}{6-m}$=1表示焦点在y轴上的椭圆.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题q为真命题,求实数m的取值范围;
(3)若命题“p且q”是假命题,“p或q”是真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案