精英家教网 > 高中数学 > 题目详情

某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(Ⅰ)求该安全标识墩的体积;
(Ⅱ)证明:直线BD平面PEG.

(Ⅰ)64000(cm);(Ⅱ)只需证明平面PEG

解析试题分析:解: (Ⅰ)该安全标识墩的体积为:
 ………………6分
(Ⅱ)连结EG,HF及 BD,EG与HF相交于O,连结PO.
平面EFGH ,  
  平面PEG
   平面PEG;. ………………12分 
考点:椎体、柱体的体积公式;直线与平面垂直的判定定理。
点评:本题不难,关键是能看懂图形。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:三棱柱中,,,侧棱底面的中点,边上的动点。

(1)若中点,求证:平面
(2)若,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心.

(1)求圆锥的表面积;
(2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知平面,且是垂足,

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.

( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正四棱柱ABCD-A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.

(1)求证:A1C⊥面AEF;
(2)求截面AEF与底面ABCD所成二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某建筑物的上半部分是多面体, 下半部分是长方体(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.


(Ⅰ)求直线与平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求该建筑物的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱中,底面是直角梯形,

(1)求证:是二面角的平面角;
(2)在上是否存一点,使得与平面与平面都平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用符号语言表示语句:“直线经过平面内一定点,但外”,并画出图形。

查看答案和解析>>

同步练习册答案