精英家教网 > 高中数学 > 题目详情
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
(1)∵在正三角形ABC中,CMAB,又AFCM∴EGAB, EGAF,∴EG面ABF.
(2)

试题分析:(1)取AB的中点M,连结GM,MC,G为BF的中点,

所以GM //FA,又EC面ABCD, FA面ABCD,
∵CE//AF,
∴CE//GM,
∵面CEGM面ABCD=CM,
EG// 面ABCD,
∴EG//CM,
∵在正三角形ABC中,CMAB,又AFCM
∴EGAB, EGAF,
∴EG面ABF.
(2)建立如图所示的坐标系,设AB=2,
则B()E(0,1,1) F(0,-1,2)

=(0,-2,1) , =(,-1,-1),   =(,1, 1),
设平面BEF的法向量=()则
     令,则,
=()                 
同理,可求平面DEF的法向量  =(-
设所求二面角的平面角为,则
=.
点评:本题考查线面垂直,考查面面角,正确运用线面垂直的判定,求出平面的法向量是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正三棱(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,五面体中, ,底面ABC是正三角形, =2.四边形是矩形,二面角为直二面角,D为中点。
(I)证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
在如图的多面体中,⊥平面,,   的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若平面,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱中,E为AC中点

(1)求证: 
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面
(2)证明:平面平面
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四面体S—ABC中,E为SA的中点,F为的中心,则直线EF与平面ABC所成的角的正切值是                 

查看答案和解析>>

同步练习册答案