精英家教网 > 高中数学 > 题目详情

已知, 函数, 若实数m, n满足f (m)>f (n),则m,n的大小关系为____▲______;

m<n          

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x+5,x∈R,
(1)求:函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;
(3)当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求:实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是给定的实常数.设函数f(x)=(x-a)2(x+b)ex,b∈R,x=a是f(x)的一个极大值点.
(1)求b的取值范围.
(2)设x1,x2,x3是f(x)的3个极值点,问是否存在实数b,可找到x4∈R,使得x1,x2,x3,x4的某种排xxi1xi2xi3xi4(其中{i1,i2,i3,i4}={1,2,3,4})依次成等差数列?若存在,求所有的b及相应的x4;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=cos(ωx+φ)(ω>0,且-π≤φ≤0)的定义域为R,其图象C关于直线x=
π
4
对称,又f(x)在区间[0,
π
6
]上是单调函数.
(1)求函数f(x)的表达式;
(2)将图象C向右平移
π
4
个单位后,得到函数y=g(x)的图象.
①化简,并求值:
1+f(20°)+g(20°)
1+f(20°)-g(20°)
+4f(10°);
②若关于x的方程f(x)=g(x)+m在区间[0,
π
6
]上有唯一实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+(p+2)x+3,p为实数.
(1)若函数是偶函数,试求函数f(x)在区间[-1,3]上的值域;
(2)已知α:函数f(x)在区间[-
12
,+∞)
上是增函数,β:方程f(x)=p有小于-2的实根.试问:α是β的什么条件(指出充分性和必要性)?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•虹口区一模)已知:函数f(x)=x3+px2+9qx+p+q+3 (x∈R)的图象关于原点对称,其中p,q是实常数.
(1)求p,q的值;
(2)确定函数f(x)在区间[-3,3]上的单调性;
(3)若当-3≤x≤3时,不等式f(x)≥10sint-49恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案