精英家教网 > 高中数学 > 题目详情
证明:函数f(x)=x+
x
在(0,
4
7
]上是增函数.
考点:函数单调性的判断与证明
专题:证明题,导数的概念及应用
分析:求导得出f′(x)=1-
1
2
x
,当x∈(0,
4
7
]时,f′(x)>0,利用函数单调性与导数关系可得.
解答: 解:f(x)=x+
x
,定义域为[0,+∞),
f′(x)=1-
1
2
x
,当x∈(0,
4
7
]时,f′(x)>0,
所以函数f(x)=x+
x
在(0,
4
7
]上是增函数.
点评:本题考查函数单调性的证明,导数是研究函数单调性的有力工具.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向量
a
=(0,2,1),向量
b
=(-1,1,-2),则向量
a
与向量
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,直线l的方程为(λ-1)x+(λ-1)y+1-λ=0(λ∈R)直线l与圆C交于PQ两点,设O为原点.求证:对任意实数λ直线l过定点E.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,cosA=
b
c
,则△ABC形状是(  )
A、正三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x+1)(x+
2
x
6的展开式中的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1的方向向量
a
=(2,4,x),直线l2的方向向量
b
=(2,y,2),若|
a
|=6,且
a
b
,则x+y的值是(  )
A、-3或1B、3或-1
C、-3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角a的终边经过点P(2,-3),求a的六个三角函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某学校的一次选拔性考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下表所示的频数分布表:
组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
频数5182826176
(1)求抽取的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)已知这次考试共有2000名考生参加,如果近似地认为这次成绩z服从正态分布N(μ,σ2)(其中μ近似为样本平均数
x
,σ2近似为样本方差s2),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:
161
≈12.7,若z~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.682,P(μ-2σ<z<μ+2σ)=0.9544.).
(3)已知样本中成绩在[90,100]中的6名考生中,有4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的周期函数,最小正周期是π,若f(
3
)=
3
2
,则f(
3
)的值为(  )
A、-
1
2
B、
3
2
C、-
3
2
D、
1
2

查看答案和解析>>

同步练习册答案