精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+bx+c(a≠0)满足:①f(0)=0;②?x∈R,f(x)≥x;③f(数学公式)=f(数学公式).
(1)求f(x)的表达式;
(2)试讨论函数g(x)=f(x)-2x在区间[-2,2]内的单调性;
(3)是否存在实数t,使得函数h(x)=f(x)-x2-x+t与函数u(x)=|log2x|(x∈(0,2])的图象恒有两个不同交点,如果存在,求出相应t的取值范围;如果不存在,说明理由.

解:(1)由条件①得f(0)=c=0,
由③f(-+x)=f(--x)知f(x)的对称轴x=-=-,即a=b,
由②?x∈R,f(x)≥x,即ax2+(a-1)x≥0,对?x∈R恒成立,

又(a-1)2≥0,∴a=b=1,
∴f(x)=x2+x.
(2)g(x)=f(x)-2x=x2-x,其图象为开口向上的抛物线且对称轴为x=
所以g(x)在区间[-2,]上单调递减,在区间[,2]上单调递增;.
(3)存在实数t,使两函数图象恒有两个交点,理由如下:
h(x)=f(x)-x2-x+t=t,
又函数u(x)=|log2x|(x∈(0,2])在(0,1)上单调递减,在(1,2)上单调递增,又u(1)=0,u(2)=1,
∴h(x)与u(x)恒有两个不同交点得实数t的取值范围是(0,1].
分析:(1)由①f(0)=0可得c值,由③可知函数f(x)图象的对称轴方程,从而可得a,b间的关系式,由②可得f(x)-x≥0恒成立,根据恒成立问题可得一不等式,结合a,b间的关系即可求得a,b值;
(2)g(x)=f(x)-2x=x2-x,结合其图象特征即可求得其单调区间;
(3)数形结合:h(x)=f(x)-x2-x+t=t,结合u(x)的图象特征即可求得t的范围.
点评:本题主要考查了函数的解析式的求解,函数的单调区间,零点存在的判定定理,考查了分类讨论思想的在解题中的应用.属于综合性较强的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案