精英家教网 > 高中数学 > 题目详情

已知椭圆的焦点为(-1,0)和(1,0),P是椭圆上的一点,且 与的等差中项,则该椭圆的方程为(  )

    A.  B.  C.  D.

C


解析:

用椭圆定义+.又因为 与的等差中项,所以+,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-1,0),F2(1,0),直线l:x-y+5=0,则
(1)经过直线l上一点P且长轴长最短的椭圆方程为
 
,(2)点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的焦点为F1(0,-5),F2(0,5),点P(3,4)在椭圆上,求它的方程
(2)已知双曲线顶点间的距离为6,渐近线方程为y=±
32
x,求它的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-6,0),F2(6,0),且该椭圆过点P(5,2).
(1)求椭圆的标准方程
(2)若椭圆上的点M(x0,y0)满足MF1⊥MF2,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-t,0),F2(t,0),(t>0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项.
(1)求椭圆方程;
(2)如果点P在第二象限且∠PF1F2=1200,求tan∠F1PF2的值;
(3)设A是椭圆的右顶点,在椭圆上是否存在点M(不同于点A),使∠F1MA=90°,若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(0,-2
2
)
F2(0,2
2
)
,离心率为e,已知
2
3
,e,
4
3
成等比数列;
(1)求椭圆的标准方程;
(2)已知P为椭圆上一点,求
PF1
PF2
最大值.

查看答案和解析>>

同步练习册答案