精英家教网 > 高中数学 > 题目详情

【题目】设等差数列{an}的公差d>0,前n项和为Sn , 已知3 是﹣a2与a9的等比中项,S10=﹣20.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).

【答案】
(1)解:∵3 是﹣a2与a9的等比中项,∴ =﹣a2a9,又S10=﹣20.

∴﹣(a1+d)(a1+8d)=45,10a1+ d=﹣20,

联立解得a1=﹣11,d=2.

∴an=﹣11+2(n﹣1)=2n﹣13


(2)解:1≤n≤5时,bn= = =﹣

n≥6,bn= = =

∴n≥6时,数列{bn}的前n项和Tn=﹣ +

=


【解析】(1)利用等比数列的通项公式与性质、等差数列的通项公式与求和公式即可得出.(2)分类讨论,利用“裂项求和”方法即可得出.
【考点精析】关于本题考查的数列的前n项和和数列的通项公式,需要了解数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于f(x)=4sin (xR),有下列命题

①由f(x1)=f(x2)=0可得x1x2π的整数倍

yf(x)的表达式可改写成y=4cos

yf(x)图象关于对称;

yf(x)图象关于x=-对称.

其中正确命题的序号为________(将你认为正确的都填上)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的一个顶点为抛物线的顶点 两点都在抛物线上,且.

(1)求证:直线必过一定点;

(2)求证: 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为(
A.31.2
B.32.4
C.33.6
D.34.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若,则称的“不动点”;若,则称的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为,即

)设函数,求集合

)求证:

)设函数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,,,分别为棱的中点.

(1)求证:∥平面

(2)若异面直线 所成角为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案