精英家教网 > 高中数学 > 题目详情
(2010•江西模拟)在正三棱锥S-ABC中,M为棱SC上异于端点的点,且SB⊥AM,若侧棱SA=
3
,则正三棱锥S-ABC的外接球的表面积是
分析:根据三棱锥为正三棱锥,可证明出AC⊥SB,结合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC的外接球的表面积.
解答:解:取AC中点,连接BN、SN
∵N为AC中点,SA=SC
∴AC⊥SN,同理AC⊥BN,
∵SN∩BN=N
∴AC⊥平面SBN
∵SB?平面SBN
∴AC⊥SB
∵SB⊥AM且AC∩AM=A
∴SB⊥平面SAC⇒SB⊥SA且SB⊥AC
∵三棱锥S-ABC是正三棱锥
∴SA、SB、SC三条侧棱两两互相垂直.
∵侧棱SA=
3

∴正三棱锥S-ABC的外接球的直径为:2R=
SA2+SB2+SC2
=3

外接球的半径为R=
3
2

∴正三棱锥S-ABC的外接球的表面积是S=4πR2=9π
故答案为9π
点评:本题以正三棱锥中的垂直关系为例,考查了空间线面垂直的判定与性质,以及球内接多面体等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•江西模拟)设f(x)=x2-6x+5,实数x,y满足条件
f(x)-f(y)≥0
1≤x≤5
,则
y
x
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)若(x2+
1x
)n(n∈N*)
的二项展开式中第5项为常数项,则n=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)已知集合A,B,则A∪B=A是A∩B=B的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)函数y=
x-3
x+1
(  )

查看答案和解析>>

同步练习册答案