精英家教网 > 高中数学 > 题目详情
3.与角$-\frac{π}{3}$终边相同的角是(  )
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{11π}{6}$D.$\frac{5π}{3}$

分析 直接写出终边相同角的集合得答案.

解答 解:∵与-$\frac{π}{3}$角终边相同的角的集合为A={α|α=-$\frac{π}{3}$+2kπ,k∈Z},
取k=1,得α=$\frac{5π}{3}$.
∴与-$\frac{π}{3}$角终边相同的角是$\frac{5π}{3}$.
故选:D

点评 本题考查了终边相同角的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别为双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,离心率为$\frac{5}{3}$,过原点的l交双曲线左、右两支分别于A,B,若|BF1|-|AF1|=6,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{18}-\frac{y^2}{32}=1$C.$\frac{x^2}{9}-\frac{y^2}{25}=1$D.$\frac{x^2}{36}-\frac{y^2}{64}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.圆F:(x-1)2-y2=1和抛物线y2=4x,过F的直线l与抛物线和圆依次交于A、B、C、D四点
(1)当|BD|+|AC|=7时,求直线l的方程;
(2)是否存在过点F的直线l,使得三角形OAB与三角形OCD的面积之比为4:1,若存在,求出直线l的方程,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若数列{an}满足:a1<a2>a3<a4>…>a2n-1<a2n>a2n+1…,则称数列{an}为“正弦数列”,现将1,2,3,4,5这五个数排成一个“正弦数列”,所有排列种数记为a,则二项式($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6的展开式中含x2项的系数为-96.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$cosθ=-\frac{3}{5}$,$tanθ=\frac{4}{3}$,则角θ的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y=ax2过点A(1,2),则a=2,准线方程是$y=-\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow a=(m,1)$,$\overrightarrow b=(1,2)$,且${|{\overrightarrow a+\overrightarrow b}|^2}={|{\overrightarrow a}|^2}+{|{\overrightarrow b}|^2}$,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有2名老师,3名男生,3名女生站成一排照相留念,在下列情况下,各有多少种不同站法?(最终结果用数字表示)
(1)3名男生必须站在一起;
(2)2名老师不能相邻;
(3)若3名女生身高互不相等,从左到右女生必须按由高到矮顺序站.

查看答案和解析>>

同步练习册答案