精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,

AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。

(Ⅰ) 求证:平面ADE⊥平面ABE ;

(Ⅱ) 求二面角A—EB—D的大小的余弦值;

(Ⅲ)求点F到平面BDE的距离。

(Ⅱ)余弦值为(Ⅲ)点F到平面BDE的距离为


解析:

解法1:(Ⅰ)证明:取BE的中点O,连OC,OF,DF,则2OFBA…2分

∵AB⊥平面BCE,CD⊥平面BCE,∴2CD BA,

∴OFCD,∴OC∥FD      ………………4分

∵BC=CE,∴OC⊥BE,又AB⊥平面BCE.

∴OC⊥平面ABE. ∴FD⊥平面ABE.

从而平面ADE⊥平面ABE.     ………………6分

(Ⅱ)二面角A—EB—D与二面角F—EB—D相等,由(Ⅰ)知二面角F—EB—D的平面角为∠FOD。BC=CE=2, ∠BCE=1200,OC⊥BE得BO=OE=,OC=1,∴OFDC为正方形,∴∠FOD=450

∴二面角A—EB—D的余弦值为。   ……………………10分

(Ⅲ)∵OFDC为正方形,∴CF⊥OD,CF⊥EB,∴CF⊥面EBD,

∴点F到平面BDE的距离为FC,∴点F到平面BDE的距离为。……………14分

解法2:取BE的中点O,连OC.∵BC=CE, ∴OC⊥BE,又AB⊥平面BCE.

以O为原点建立如图空间直角坐标系O-xyz

则由已知条件有:

 ……………………………2分

设平面ADE的法向量为

则由·

·

可取                 …………………………… 4分

又AB⊥平面BCE,∴AB⊥OC,OC⊥平面ABE,

∴平面ABE的法向量可取为.

··=0, ∴,∴平面ADE⊥平面ABE.…… 6分

(Ⅱ)设平面BDE的法向量为

则由·

·可取……… 7分

∵平面ABE的法向量可取为                         …………8分

∴锐二面角A—EB—D的余弦值为=,………… 9分

∴二面角A—EB—D的余弦值为。          ……………………………10分

(Ⅲ)点F到平面BDE的距离为。……………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案