精英家教网 > 高中数学 > 题目详情
(2011•合肥三模)已知P为直线x+y-25=0任意一点,点Q为
x2
16
+
y2
9
=1
上任意一点,则|PQ|的最小值为
10
2
10
2
分析:设动点P(ρcosθ,ρsinθ),由点到直线的距离公式求出它到直线的距离d,再由及正弦函数的有界性求出答案.
解答:解:∵点Q为
x2
16
+
y2
9
=1
上任意一点,
设动点Q(4cosθ,3sinθ)到直线x+y-25=0的距离等于
d=
|4cosθ+3sinθ-25|
1+1
=
|5sin(θ+α)-25|
2
=
-5sin(θ+α)+25
2

∵-5sin(θ+α)+25∈[20,30],
∴d∈[
20
2
30
2
],
∴d的最小值为
20
2
=10
2

故答案为:10
2
点评:本题考查点到直线的距离公式的应用,椭圆的参数方程,以及正弦函数的有界性.利用正弦函数的有界性求出d的最小值是本题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•合肥三模)设函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则函数y=f(x)在区间[0,100]上至少有个
50
50
零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
(1)若
a
b
,求x的值;
(2)当x∈(-
π
6
π
4
)
时,求函数f(x)=
a
b
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)在△ABC中,AB⊥AC,AB=6,AC=4,D为AC的中点,点E在边AB上,且3AE=AB,BD与CE交于点G,则
AG
BC
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)5名男性驴友到某旅游风景区游玩,晚上入住一家宾馆,宾馆有3间客房可选,一间客房为3人间,其余为2人间,则5人入住两间客房的不同方法有
20
20
种(用数字法作答).

查看答案和解析>>

同步练习册答案