精英家教网 > 高中数学 > 题目详情
空间四边形ABCD中,点M,N分别是AB,CD的中点,且
AB
=
b
AC
=
c
AD
=
d
,则用向量
b
c
d
表示向量
MN
 
考点:向量数乘的运算及其几何意义
专题:平面向量及应用
分析:据题意,画出图形,结合图形,求出向量
MN
的大小.
解答: 解:据题意,画出图形,如图所示;
∵点M,N分别是AB,CD的中点,
AM
=
1
2
AB
=
1
2
b

AN
=
1
2
AD
+
AC
)=
1
2
d
+
c
);
MN
=
AN
-
AM
=
1
2
d
+
c
)-
1
2
b
=
1
2
c
+
1
2
d
-
1
2
b

故答案为:
1
2
c
+
1
2
d
-
1
2
b
点评:本题考查了平面向量的加法与减法的几何意义的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=-x+1是函数f(x)=-
1
a
•ex的切线,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的角A,B,C的对边,且(a-b)(sinA+sinB)=(sinA-sinC)c,若△ABC面积的最大值为
3
4
,求a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(I)求an及Sn
(II)求数列{
1
Sn
}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABED内接于⊙O,AB∥DE,AC切⊙O于A,交ED延长线于C.若AD=BE=
2
,CD=1,则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=
1
n+1
+
1
n+2
+…+
1
3n-1
(n∈N+).则f(k+1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)对任意的x都有f(x+4)=f(x),当x∈[0,4]时,f(x)=2|x-m|+n,且f(2)=1
(Ⅰ)求m,n的值;
(Ⅱ)令g(x)=ln(x+a),若对任意x1∈[1,e],总存在x2∈R,使得g(x1)+2=f(x2)成立,求实数a的取值范围;
(Ⅲ)记函数f(x)在区间[t,t+1](0≤t≤2)上的最小值为h1(t),最大值为h2(t),令h(t)=h1(t)•h2(t),请写出h(t)关于t的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校从今年参加自主招生考试的学生中随机抽取容量为n的学生成绩样本,得到频率分布表如下:
组数分组频数频率
  第一组[230,235)80.16
第二组[235,240)p0.24
第三组[240,245)15q
第四组[245,250)100.20
第五组[250,255]50.10
合计n1.00
(1)求n,p,q的值;
(2)为了选拔出更加优秀的学生,该高校决定在第三、四、五组中用分层抽样的方法抽取6名学生进行第二轮考核,分别求第三、四、五组参加考核的人数;
(3)在(2)的前提下,高校决定从这6名学生中择优录取2名学生,求2人中至少有1人是第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,且an=
Sn
n
+n-1

(1)证明:数列{an}为等差数列;
(2)求数列{3an}的前n项和Tn

查看答案和解析>>

同步练习册答案