精英家教网 > 高中数学 > 题目详情
3.用斜二测画法画一个水平放置的平面图形的直观图为如右图所示的一个正方形,则原来的图形为(  )
A.B.C.D.

分析 根据题目给出的直观图的形状,画出对应的原平面图形的形状,则问题可求.

解答 解:作出该直观图的原图形,因为直观图中的线段C′B′∥x′轴,所以在原图形中对应的线段平行于x轴且长度不变,点C′
和B′在原图形中对应的点C和B的纵坐标是O′B′的2倍,
则OB=2$\sqrt{2}$,所以OC=3,
故选:A.

点评 本题考查了平面图形的直观图,考查了数形结合思想,解答此题的关键是掌握平面图形的直观图的画法,能正确的画出直观图的原图形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{\sqrt{1-x}}$+$\sqrt{x+3}$-1的定义域是(  )
A.(-1,3]B.(-1,3)C.[-3,1)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列表示正确的是(  )
A.∅∈{0}B.{3}∈{1,3}C.0⊆{0,1}D.∅⊆{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知过点P(-1,1)且斜率为k的直线l与抛物线y2=x有且只有一个交点,则k的值等于0或$\frac{{-1+\sqrt{2}}}{2}$或$\frac{{-1-\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a∈R,且a≠0).
(1)若函数f(x)在区间(2016,+∞)上单调递增,求实数a的取值范围;
(2)若在区间[1,e]上至少存在一点x0.使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=lg(-x2+2x)的单调递减区间是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,已知角A,B,C所对的边分别为a,b,c,$\frac{cosA}{a}$+$\frac{cosC}{c}$=$\frac{1}{b}$,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面积为2$\sqrt{7}$,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A,B两点,且直线l的倾斜角是渐近线OA倾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(7,1),B(1,a),若直线y=x与线段AB交于点C,且$\overrightarrow{AC}=2\overrightarrow{CB}$,则实数a=4.

查看答案和解析>>

同步练习册答案