精英家教网 > 高中数学 > 题目详情
14、平面几何中有结论“周长一定的所有矩形中,正方形的面积最大”,类比到空间可得的结论是
表面积一定的所有长方体中,正方体的体积最大
分析:本题考察的知识点是类比推理,在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;故由:周长一定的所有矩形中,正方形的面积最大”,类比到空间可得的结论是表面积一定的所有长方体中,正方体的体积最大.
解答:解:在由平面几何的性质类比推理空间立体几何性质时,
一般为:由平面几何中点的性质,类比推理空间几何中线的性质;
由平面几何中线的性质,类比推理空间几何中面的性质;
由平面几何中面的性质,类比推理空间几何中体的性质;
故由:“周长一定的所有矩形中,正方形的面积最大”,
类比到空间可得的结论是:
“表面积一定的所有长方体中,正方体的体积最大.”
故答案为:“表面积一定的所有长方体中,正方体的体积最大.”
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面几何中有:Rt△ABC的直角边分别为a,b,斜边上的高为h,则
1
a2
+
1
b2
=
1
h2
.类比这一结论,在三棱锥P-ABC中,PA、PB、PC两两互相垂直,且PA=a,PB=b,PC=c,此三棱锥P-ABC的高为h,则结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何中有:Rt△ABC的直角边分别为a,b,斜边上的高为h,则.类比这一结论,在三棱锥P—ABC中,PA、PB、PC两两互相垂直,且PA=a,PB=b,PC=c,此三棱锥P—ABC的高为h,则结论为______________

查看答案和解析>>

科目:高中数学 来源:2010年河南省郑州外国语学校高二下学期期中考试数学卷(文) 题型:填空题

在平面几何中有:Rt△ABC的直角边分别为a,b,斜边上的高为h,则.类比这一结论,在三棱锥P—ABC中,PA、PB、PC两两互相垂直,且PA=a,PB=b,PC=c,此三棱锥P—ABC的高为h,则结论为______________

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年高三(上)数学寒假作业01(集合、逻辑、概率统计、复数、推理证明)(解析版) 题型:填空题

平面几何中有结论“周长一定的所有矩形中,正方形的面积最大”,类比到空间可得的结论是   

查看答案和解析>>

同步练习册答案