精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F为PC的中点,AF⊥PB.

(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.

【答案】
(1)解:如图,连接BD交AC于点O

∵BC=CD,AC平分角BCD,∴AC⊥BD

以O为坐标原点,OB、OC所在直线分别为x轴、y轴,

建立空间直角坐标系O﹣xyz,

则OC=CDcos =1,而AC=4,可得AO=AC﹣OC=3.

又∵OD=CDsin =

∴可得A(0,﹣3,0),B( ,0,0),C(0,1,0),D(﹣ ,0,0)

由于PA⊥底面ABCD,可设P(0,﹣3,z)

∵F为PC边的中点,∴F(0,﹣1, ),由此可得 =(0,2, ),

=( ,3,﹣z),且AF⊥PB,

=6﹣ =0,解之得z=2 (舍负)

因此, =(0,0,﹣2 ),可得PA的长为2


(2)解:由(I)知 =(﹣ ,3,0), =( ,3,0), =(0,2, ),

设平面FAD的法向量为 =(x1,y1,z1),平面FAB的法向量为 =(x2,y2,z2),

=0且 =0,∴ ,取y1= =(3, ,﹣2),

同理,由 =0且 =0,解出 =(3,﹣ ,2),

∴向量 的夹角余弦值为cos< >= = =

因此,二面角B﹣AF﹣D的正弦值等于 =


【解析】(1)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2 ,从而得到 =(0,0,﹣2 ),可得PA的长为2 ;(2)由(1)的计算,得 =(﹣ ,3,0), =( ,3,0), =(0,2, ).利用垂直向量数量积为零的方法建立方程组,解出 =(3, ,﹣2)和 =(3,﹣ ,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出 夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)圆是以为直径的圆,一直线与之相切,并与椭圆交于不同的两点,当且满足时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面上, ,| |=| |=1, = + .若| |< ,则| |的取值范围是(
A.(0, ]
B.( ]
C.( ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形ABC中,角A、B、C所对边分别为a,b,c,且

(1)若cosA=,求sinC的值;

(2)若b=,a=3c,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间(0,1]上任取两个数ab,则函数f(x)=x2axb2无零点的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )

A. B. C. D.

【答案】D

【解析】在三棱锥中,因为 ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.

点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.

型】单选题
束】
21

【题目】已知函数,则的大致图象为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的奇函数,且当x0时,fx)=x2+2x.现已画出函数fx)在y轴左侧的图象如图所示,

(1)画出函数fx),xR剩余部分的图象,并根据图象写出函数fx),xR的单调区间;(只写答案)

2)求函数fx),xR的解析式.

查看答案和解析>>

同步练习册答案