精英家教网 > 高中数学 > 题目详情
已知平面向量
α
β
(
α
β
β
0)满足|
α
|=1
,(1)当|
α
-
β
|=|
α
+
β
|=2
时,求|
β
|
的值;(2)当
β
α
-
β
的夹角为120°时,求|
β
|
的取值范围.
分析:(1)由|
α
-
β
|=|
α
+
β
|=2
|
α
-
β
|2=|
α
+
β
|2=4
,化简得
α
β
=0
α
2
+2
α
β
+
β
2
=4
可求
(2)可设
OA
=
α
OB
=
β
,则
BA
=
α
-
β
,由题可得在△ABO中,∠OBA=60°,由正弦定理,
|
β
|
sinA
=
|
α
|
sinB

可得|
β
|=
2
3
3
sinA
,由0°<A<120° 可求
解答:精英家教网解:(1)|
α
-
β
|=|
α
+
β
|=2
|
α
-
β
|2=|
α
+
β
|2=4
,化简得
α
β
=0
α
2
+2
α
β
+
β
2
=4

|
α
|=1
,∴|
β
|=
3
,即|
β
|
的值为
3

(2)如图,设
OA
=
α
OB
=
β
,∴
BA
=
α
-
β

由题,
β
α
-
β
的夹角为120°,因此,在△ABO中,∠OBA=60°,根据正弦定理,
|
β
|
sinA
=
|
α
|
sinB

|
β
|=
2
3
3
sinA
,∵0°<A<120°∴0<sinA≤1,
|
β
|
的取值范围是(0,
2
3
3
]
点评:本题主要考查了平面向量的数量积性质,三角形的正弦定理的应用,三角函数的性质的综合应用,属于基础知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知平面向量a=(x,1),b=(-x,x2),则向量a+b(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-3),
b
=(4,-2),λ
a
+
b
a
垂直,则λ是(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=1,|
b
|=2
a
b
的夹角为60°,则“m=1”是“(
a
-m
b
)⊥
a
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知平面向量
a
b
的夹角为
π
6
,且
a
b
=3,|
a
|=3,则|
b
|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(m,1),
b
=(m2
1
9
)
,且
c
=(1,n)
d
=(
1
4
n2)
,满足
a
c
b
d
=1
的解(m,n)仅有一组,则实数λ的值为(  )

查看答案和解析>>

同步练习册答案