精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知n∈N*,数列{dn}满足dn=
3+(-1)n
2
,数列{an}满足an=d1+d2+d3+…+d2n;又知数列{bn}中,b1=2,且对任意正整数m,n,
b
m
n
=
b
n
m

(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和.
分析:(I)由dn=
3+(-1)n
2
,代入分组求和,然后结合等差数列的求和公式可求an,然后可求bn
(Ⅱ)由题知新数列{cn}中的奇数列与偶数列仍成等比数列,首项分别是b1=2,b2=4公比均是8,结合等比数列的求和公式分组求和即可求解
解答:解:(I)∵dn=
3+(-1)n
2

∴an=d1+d2+d3+…+d2n=
3-1
2
+
3+1
2
+…
3-1
2
+
3+1
2

=
2
2
×n+
4n
2
=3n…(3分)
又由题知:令m=1,则b2=
b
2
1
=22
b3=
b
3
1
=23
bn=
b
n
1
=2n
…(5分)
bn=2n,则
b
m
n
=2nm
b
n
m
=2mn
,所以
b
m
n
=
b
n
m
恒成立
bn2n,当m=1,
b
m
n
=
b
n
m
不成立,所以bn=2n…(6分)
(Ⅱ)由题知将数列{bn}中的第3项、第6项、第9项…删去后构成的新数列{cn}中的奇数列与偶数列仍成等比数列,首项分别是b1=2,b2=4公比均是8,…(9分)
∴T2013=(c1+c3+c5+…+c2013)+(c2+c4+c6+…+c2012
=
2×(1-81007)
1-8
+
4×(1-81006)
1-8
=
20×81006-6
7
…(12分)
点评:本题主要考查了等差数列的求和公式的应用及等比数列的求和公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案