精英家教网 > 高中数学 > 题目详情

已知t∈R,圆C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圆C的圆心在直线x-y+2=0上,求圆C的方程;
(2)圆C是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.

(1)x2+y2+2x-2y-8=0或x2+y2-4x-8y+4=0(2)过定点(2,0).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.

(1)求证:BC2=AC·BP;
(2)若EC=2,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点在圆内,动直线过点且交圆两点,若△ABC的面积的最大值为,则实数的取值范围为      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆经过点,且圆心在直线上.
(1)求圆的方程;
(2)设点在圆上,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程:,其中
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点为坐标平面内的动点,满足
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,轴上的一动点,试讨论直线
与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆心为点的圆与直线相切.

(1)求圆的标准方程;
(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

查看答案和解析>>

同步练习册答案