精英家教网 > 高中数学 > 题目详情

【题目】已知,函数

(Ⅰ)求函数处的切线;

(Ⅱ)若函数处有最大值,求实数a的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】

I)根据导数的几何意义求切线斜率,从而写出切线的方程;(Ⅱ)利用先必要,后充分的方法缩小参数范围,减少分类讨论的情形,并通过导数研究函数的单调性,从而判断并求解函数在给定区间内的最值.

解:(Ⅰ)因为

,又有

故函数处的切线为

(Ⅱ)由知函数的图象过定点,且,又因为函数处有最大值,则,即

时,上恒成立,上单调递增,所以处有最大值,符合题意;

时,,令,则,从而知上单调递增,上单调递减,上单调递增,故函数上的最大值为

又因为,所以,即,令,则上单调递增,且,可得,则

综上,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用abcd表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X|a1|+|b2|+|c3|+|d4|

1)求该业主获得礼品的概率;

2)求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中(如图1),,点ECD上,且,将沿AE折起,使得平面平面ABCE(如图2),GAE中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)在线段BD上是否存在点P,使得平面ADE?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若,对恒成立,求实数的取值范围;

3)当时,设.若正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数有极值,求实数的取值范围;

2)当时,若处导数相等,证明:

3)若函数上有两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的导数为

1)若不等式对任意恒成立,求实数的取值范围.

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列..的前n项和为,正整数满足:①,②是满足不等式的最小正整数,则

A.6182B.6183C.6184D.6185

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,D,E分别是的中点.

(1)求证:DE∥平面

(2)若,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论上的单调性;

(Ⅱ)设,若的最大值为0,求的值;

查看答案和解析>>

同步练习册答案