精英家教网 > 高中数学 > 题目详情

已知曲线C:x2+y2-4ax+2ay-20+20a=0.
(1)证明不论a取何实数,曲线C必过定点;
(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上.

证明:(1)原方程可整理为a(-4x+2y+20)=-x2-y2+20
,可得,故曲线C必过定点(4,-2);
(2)∵D2+E2-4F=20(a-2)2
∴a≠2时,D2+E2-4F>0,即曲线C是一个圆,
设圆心坐标为(x,y),则x=2a,y=-a,∴x+2y=0,
∴圆心在直线x+2y=0上.
分析:(1)分离参数,可得方程组,解方程组,即可得到结论;
(2)先判断a≠2时,D2+E2-4F>0,再得出圆心坐标,消参可得结论.
点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:x2-y|y|=1.
(1)画出曲线C的图象,
(2)若直线l:y=x+m与曲线C有两个公共点,求m的取值范围;
(3)若过点P(0,2)的直线与曲线C在x轴上方的部分交于不同的两点M,N,求t=
OM
OP
+
OM
PN
的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)已知曲线C:x2-y|y|=1(|x|≤4).
(1)画出曲线C的图象,
(2)若直线l:y=kx-1与曲线C有两个公共点,求k的取值范围;
(3)若P(0,p)(p>0),Q为曲线C上的点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2-y|y|=1(|x|≤4).
(1)画出曲线C的图象,
(2)(文)若直线l:y=x+m与曲线C有两个公共点,求m的取值范围;
(理)若直线l:y=kx-1与曲线C有两个公共点,求k的取值范围;
(3)若P(0,p)(p>0),Q为曲线C上的点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:x2-y|y|=1.
(1)画出曲线C的图象,
(2)若直线l:y=x+m与曲线C有两个公共点,求m的取值范围;
(3)若过点P(0,2)的直线与曲线C在x轴上方的部分交于不同的两点M,N,求t=
OM
OP
+
OM
PN
的范围.

查看答案和解析>>

科目:高中数学 来源:2007年上海市徐汇区零陵中学高三3月综合练习数学试卷(五)(解析版) 题型:解答题

已知曲线C:x2-y|y|=1(|x|≤4).
(1)画出曲线C的图象,
(2)(文)若直线l:y=x+m与曲线C有两个公共点,求m的取值范围;
(理)若直线l:y=kx-1与曲线C有两个公共点,求k的取值范围;
(3)若P(0,p)(p>0),Q为曲线C上的点,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案