精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知圆:和圆:

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.

(1) 直线的方程为;(2) 点或点.

解析试题分析:在解决与圆相关的弦长问题时,一般有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k,直线与圆联立消去y后得到一个关于x的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.
(1)直线过点,故可以设出直线的点斜式方程,又由直线被圆截得的弦长为,根据半弦长、半径、弦心距满足勾股定理,求出弦心距,即圆心到直线的距离,得到一个关于直线斜率的方程,解方程求出值,可求直线的方程.
(2)与(1)相同,设出过点的直线的点斜式方程,由于两直线斜率为1,且直线被圆截得的弦长与直线被圆截得的弦长相等,得到一个关于直线斜率的方程,解方程求出值,代入即得直线的方程.
试题解析:(1)由于直线与圆不相交,所以直线的斜率存在,设直线的方程为,圆的圆心到直线的距离为
因为直线被圆截得的弦长为


所以直线的方程为   (5分)
(2)设点满足条件,不妨设直线的方程为
则直线的方程为,因为的半径相等,及直线被圆截得的弦长与直线被圆截得的弦长相等,所以圆的圆心到直线的距离和圆的圆心到直线的距离相等,
   (8分)
整理得:,因为的取值有无穷多个,
所以   (12分)
解得
这样点只可能是点或点.
经检验点满足题目条件.   (14分)
考点:本题考查直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为为参数),圆的极坐标方程为.
(1)若圆关于直线对称,求的值;
(2)若圆与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,设点B,C是直线上的两点,它们的横坐标分别是,点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为2,圆心在直线上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点
(Ⅰ)求的取值范围;
(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案