精英家教网 > 高中数学 > 题目详情
8.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,平面A1BC⊥平面A1ABB1
(1)求证:AB⊥BC;
(2)设直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试比较θ和φ的大小关系,并证明你的结论.

分析 (1)过点A在平面A1ABB1内作AD⊥A1B于D,推导出AD⊥面A1BC,AD⊥BC,AA1⊥BC,从而BC⊥侧面A1ABB1,由此能证明AB⊥BC.
(2)连结CD,求出∠ACD是直线AC与平面A1BC所成的角,∠ABA1是二面角A1-BC-A的平面角,从而∠ACD=θ,∠ABA1=φ,由此能求出θ<φ.

解答 证明:(1)过点A在平面A1ABB1内作AD⊥A1B于D,
∵面A1BC⊥面A1ABB1,面A1BC∩面A1ABB1=A1B,
∴AD⊥面A1BC,
∵BC?平面A1BC,∴AD⊥BC,
∵AA1⊥平面ABC,∴AA1⊥BC,
∵AA1∩AD=A,∴BC⊥侧面A1ABB1
∵AB?面A1ABB1,∴AB⊥BC.
解:(2)连结CD,由(1)知∠ACD是直线AC与平面A1BC所成的角,
又∠ABA1是二面角A1-BC-A的平面角,
设∠ACD=θ,∠ABA1=φ,
在Rt△ADC中,sin$θ=\frac{AD}{AC}$,在Rt△ADB中,sinφ=$\frac{AD}{AB}$,
∵AB⊥BC,∴AB<AC,∴sinθ<sinφ,
∵$θ,φ∈(0,\frac{π}{2})$,∴θ<φ.

点评 本题考查异面直线垂直的证明,考查线面角与二面角大小的比较,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年内蒙古高二文上月考一数学试卷(解析版) 题型:选择题

双曲线的离心率为( )

A. B. C.2 D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(文)试卷(解析版) 题型:选择题

一个三棱锥的三条侧棱两两互相垂直,且长度分别为1、、3,则这个三棱锥的外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:填空题

已知为等腰直角三角形,斜边上的中线,将沿折成的二面角,连结,则三棱锥的体积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线C:y2=8x的焦点为F,P,Q是抛物线C的两点,且$∠PFQ=\frac{π}{3}$,弦PQ的中点E在准线上的射影为H,则$\frac{{|{EH}|}}{{|{PQ}|}}$的最大值为(  )
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某饮用水器具的三视图如图所示,则该几何体的表面积为(  )
A.B.C.D.11π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知在直四棱柱(侧棱垂直底面的棱柱)ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)求BC1与平面A1BD所成的角的正弦值;
(3)求二面角A1-DB-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,直角三角形ABC中,∠A=60°,∠ABC=90°,AB=2,E为线段BC上一点,且BE=$\frac{1}{3}$BC,沿AC边上的中线BD将△ABD折起到△PBD的位置.
(1)求证:PE⊥BD;
(2)当平面PBD⊥平面BCD时,求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的表面中最大面的面积为(  )
A.14B.12.5C.15D.17.5

查看答案和解析>>

同步练习册答案