精英家教网 > 高中数学 > 题目详情

【题目】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且 =λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.

(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为 ?若存在,求出λ的值;若不存在,请说明理由.

【答案】(I)证明:由题意,PE,PF,PD三条直线两两垂直,∴PD⊥平面PEF, 图1中,EF∥AC,∴GB=2GH,
∵G为BD中点,∴DG=2GH.
图2中,∵ =2,∴△PDH中,GR∥PD,
∴GR⊥平面PEF;
(Ⅱ)解:由题意,建立如图所示的坐标系,设PD=4,则P(0,0,0),F(2,0,0),E(0,2,0),D(0,0,4),∴H(1,1,0),
=λ,∴R( ,0),
=( ,﹣ ,0),
=(2,﹣2,0), =(0,2,﹣4),
设平面DEF的一个法向量为 =(x,y,z),则 ,取 =(2,2,1),
∵直线FR与平面DEF所成角的正弦值为
=
∴λ=
∴存在正实数λ= ,使得直线FR与平面DEF所成角的正弦值为

【解析】(I)若λ=2,证明PD⊥平面PEF,GR∥PD,即可证明:GR⊥平面PEF;(Ⅱ)建立如图所示的坐标系,求出平面DEF的一个法向量,利用直线FR与平面DEF所成角的正弦值为 ,建立方程,即可得出结论.
【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
已知在直角坐标系xOy中,曲线C的参数方程为 (φ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcos(θ﹣ )=2
(Ⅰ)求曲线C在极坐标系中的方程;
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大小;
(2)若a= ,sin2B+cos2C=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a=________,估计该小学学生身高的中位数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,AC= ,BC= ,△ABC的面积为 ,若线段BA的延长线上存在点D,使∠BDC= ,则CD=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为圆

(1)若直线过点,且被圆截得的弦长为,求直线的方程;

(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的单调区间;

,使不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非零向量 的夹角为 ,且满足| |=λ| |(λ>0),向量组 由一个 和两个 排列而成,向量组 由两个 和一个 排列而成,若 + + 所有可能值中的最小值为4 2 , 则λ=

查看答案和解析>>

同步练习册答案