精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,椭圆上任意一点到右焦点F的距离的最大值为
(I)求椭圆的方程;
(Ⅱ)已知点C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.
【答案】分析:(1)结合已知,可求a,c,由b2=a2-c2可求b,进而可求椭圆方程
(2)由题意可知0≤m<1,假设存在满足题意的直线l,设l的方程为y=k(x-1),代入,设A(x1,y1),B(x2,y2),根据方程的根与系数关系可求x1+x2,x1x2,根据y1+y2=k(x1+x2-2),从而可求B的中点为M,由|AC|=|BC|可得kCM•kAB=-1可得m,k之间得关系,结合m的范围可求k
解答:解:(1)因为,所以,(4分)
∴b=1,椭圆方程为:                 (6分)
(2)由(1)得F(1,0),所以0≤m<1,假设存在满足题意的直线l,设l的方程为y=k(x-1),
代入,得(1+2k2)x2-4k2x+2k2-2=0
设A(x1,y1),B(x2,y2),则  ①,(10分)
y1+y2=k(x1+x2-2)=
设AB的中点为M,则M(),
∵|AC|=|BC|
∴CM⊥AB即kCM•kAB=-1

∴(1-2m)k2=m
∴当时,,即存在这样的直线l
,k不存在,即不存在这样的直线l           (15分)
点评:本题主要考查了利用椭圆的性质求解椭圆的方程,直线与椭圆相交关系的应用,方程的根与系数关系的应用,直线的斜率公式的应用.属于知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案