精英家教网 > 高中数学 > 题目详情
(2012•武昌区模拟)通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:
总计
走天桥 40 20 60
走斑马线 20 30 50
总计 60 50 110
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,算得K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

参照独立性检验附表,得到的正确结论是(  )
分析:把所给的观测值与临界值进行比较,发现它大于6.635,得到有99%以上的把握认为“选择过马路的方式与性别有关”.
解答:解:由题意,K2≈7.8
∵7.8>6.635,
∴有0.01=1%的机会错误,
即有99%以上的把握认为“选择过马路的方式与性别有关”
故选A.
点评:本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)已知数列{an},{bn}满足:a1=3,当n≥2时,an-1+an=4n;对于任意的正整数n,b1+2b2+…+2n-1bn=nan.设{bn}的前n项和为Sn
(Ⅰ)计算a2,a3,并求数列{an}的通项公式;
(Ⅱ)求满足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)在圆x2+y2=4上,与直线l:4x+3y-12=0的距离最小值是
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是线段PD上的点,F是线段AB上的点,且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)当λ=1时,证明DF⊥平面PAC;
(Ⅱ)是否存在实数λ,使异面直线EF与CD所成的角为60°?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)设fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角变换,估计fk(x)在k=l,2,3时的取值情况,对k∈N*时推测fk(x)的取值范围是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(结果用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)2011年武汉电视台问政直播节日首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 一般 不满意
A部门 50% 25% 25%
B部门 80% 0 20%
C部门 50% 50% 0
D部门 40% 20% 40%
(I)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(11)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.

查看答案和解析>>

同步练习册答案