精英家教网 > 高中数学 > 题目详情
4.设$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow e$为平面向量,若$|{\overrightarrow e}|=1$,$\overrightarrow a•\overrightarrow e=1$,$\overrightarrow b•\overrightarrow e=2$,$|{\overrightarrow a-\overrightarrow b}|=2$,则$|{\overrightarrow a+\overrightarrow b}|$的最小值为3,$\overrightarrow a•\overrightarrow b$的最小值为$\frac{5}{4}$.

分析 如图所示,建立直角坐标系.$|{\overrightarrow e}|=1$,不妨设$\overrightarrow{e}$=(1,0),由$\overrightarrow a•\overrightarrow e=1$,$\overrightarrow b•\overrightarrow e=2$,不妨设$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,n),利用向量的模的计算即可求出$|{\overrightarrow a+\overrightarrow b}|$的最小值,再利用数量积运算即可得出$\overrightarrow a•\overrightarrow b$的最小值.

解答 解:如图所示,建立直角坐标系.
∵$|{\overrightarrow e}|=1$,不妨设$\overrightarrow{e}$=(1,0),
∵$\overrightarrow a•\overrightarrow e=1$,$\overrightarrow b•\overrightarrow e=2$,
不妨设$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,n).
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(3,m+n),
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=9+(m+n)2
∴$|{\overrightarrow a+\overrightarrow b}|$的最小值为3,
∴$\overrightarrow{a}$-$\overrightarrow{b}$=(-1,m-n),
∵$|{\overrightarrow a-\overrightarrow b}|=2$,
∴1+(m-n)2=4,
∴(m+n)2=3+4mn≥0,
∴mn≥-$\frac{3}{4}$,当且仅当m=-n=±$\frac{\sqrt{3}}{2}$时取等号,
∴$\overrightarrow a•\overrightarrow b$=2+mn≥2-$\frac{5}{4}$=$\frac{5}{4}$.
故答案为:3,$\frac{5}{4}$

点评 本题考查了通过建立直角坐标系解决向量有关问题、数量积运算及其性质、不等式的性质,考查了推理能力和解决问题的能力,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)设过点P(0,-2)的直线l与圆C交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.偶函数f(x)满足:f(x+2)=f(x)当0<x≤1,f(x)=2x,则f(log212)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正方体ABCD-A1B1C1D1的棱长为a,
(1)A1B与B1D1所成的角;
(2)CC1与BD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线ax+y+2=0与连接两点P(2,-3),Q(3,2)的线段相交,则实数a的取值范围$[{-\frac{4}{3},\frac{1}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某食堂以面食和米食为主食,员工良好的日常饮食应该至少需要碳水化合物5个单位,蛋白质6个单位,脂肪6个单位,每份面食含有7个单位的碳水化合物,7个单位的蛋白质,14个单位的脂肪,花费28元;而每份米食含有7个单位的碳水化合物,14个单位的蛋白质,7个单位的脂肪,花费21元.为了满足员工的日常饮食要求,同时使花费最低,需要同时采购面食和米食各多少份?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式2log2(x-3)<log24x的解集为(  )
A.B.(1,9)C.(-∞,1)∪(9,+∞)D.(3,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)的定义域为R,并满足以下条件:
①对任意x∈R,有f(x)>0; ②对任意x、y∈R,有f(xy)=[f(x)]y;  ③f($\frac{1}{3}$)>1
(1)求f(0)的值;
(2)判断f(x)的在R上单调性并说明理由;
(3)若f(2)=2,且x满足f($\frac{1}{2}$)≤f(x)≤f(2),求函数y=2f(2log2x)+$\frac{1}{{f(2{{log}_2}x)}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤1}\\{x+y≥2}\\{y≤2}\end{array}\right.$,则目标函数z=x2+y2的取值范围是[2,13].

查看答案和解析>>

同步练习册答案