精英家教网 > 高中数学 > 题目详情
(2012•洛阳模拟)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l经过点P(-1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcosθ+5=0.
(1)若直线l与曲线C有公共点,求α的取值范围;
(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.
分析:(1)先根据极坐标与直角坐标互化的公式,算出曲线C的直角坐标方程,再结合直线l的参数方程:
x=-1+tcosα
y=tsinα
,联解得到关于参数t的二次方程,运用根的判别式列式并解之,即可得到角α的取值范围;
(2)由(1)可得曲线C的参数方程,从而得到x+y=3+2
2
sin(θ+
π
4
),最后结合正弦函数的值域,即可得到x+y的取值范围.
解答:解:(1)将曲线ρ2-6ρcosθ+5=0化成直角坐标方程,得圆C:x2+y2-6x+5=0
直线l的参数方程为
x=-1+tcosα
y=tsinα
(t为参数)
将其代入圆C方程,得(-1+tcosα)2+(tsinα)2-6tsinα+5=0
整理,得t2-8tcosα+12=0
∵直线l与圆C有公共点,
∴△≥0,即64cos2α-48≥0,可得cosα≤-
3
2
或cosα≥
3
2

∵α为直线的倾斜角,得α∈[0,π)
∴α的取值范围为[0,
π
6
]∪[
6
,π)
(2)由圆C:x2+y2-6x+5=0化成参数方程,得
x=3+2cosθ
y=2sinθ
(θ为参数)
∵M(x,y)为曲线C上任意一点,
∴x+y=3+2cosθ+2sinθ=3+2
2
sin(θ+
π
4

∵sin(θ+
π
4
)∈[-1,1]
∴2
2
sin(θ+
π
4
)∈[-2
2
,2
2
],可得x+y的取值范围是[3-2
2
,3+2
2
].
点评:本题给出直线与圆的极坐标方程,要求我们将其化成直角坐标方程并研究直线与圆位置关系.着重考查了直角坐标与极坐标的互化、简单曲线的极坐标方程和直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•洛阳模拟)在△ABC中,角A、B、C所对的边分别为a、b、c,
q
=(2a,1),
p
=(2b-c,cosC)且
p
q

求:
(I)求sinA的值;
(II)求三角函数式
-2cos2C
1+tanC
+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)若a=
ln26
4
,b=ln2ln3,c=
ln2π
4
,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)阅读如图的算法框图,输出的结果S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)设变量x,y满足约束条件:
x+y≥3
x-y≥-1
2x-y≤3
.则目标函数z=2x+3y的最小值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,则球O的表面积为
(  )

查看答案和解析>>

同步练习册答案