精英家教网 > 高中数学 > 题目详情

已知函数,其中为正实数,.
(I)若的一个极值点,求的值;
(II)求的单调区间.

(Ⅰ);(Ⅱ)详见解析.

解析试题分析:(Ⅰ)由为函数的一个极值点,得到便可求出的值,但在求得答案后注意处附近左、右两侧导数符号相反,即成为极值点的必要性;(Ⅱ)求含参函数的单调区间的求解,一般要对导数方程在函数的定义域内是否有根以及有根时根的大小进行分类讨论,并结合导数值的正负来确定函数的单调区间.
试题解析:解:.
(I)因为是函数的一个极值点,
所以,因此,解得.
经检验,当时,的一个极值点,故所求的值为.
4分
(II)
 ①
(i)当,即时,方程①两根为
.
此时的变化情况如下表:









0

0



极大值

极小值

所以当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,它的一个极值点是
(Ⅰ) 求的值及的值域;
(Ⅱ)设函数,试求函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若处的切线垂直于直线,求该点的切线方程,并求此时函数的单调区间;
(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的极值;
(Ⅱ)当时,若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.
(3) 求证:,(其中是自然对数的底).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.

查看答案和解析>>

同步练习册答案