精英家教网 > 高中数学 > 题目详情
已知函数的图象有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0)
【答案】分析:(I)设出函数的公共点,对两个函数求导,根据两个函数在这个点上的切线相同,得到两个关系式,整理变化出b的函数式,求出最大值.
(II)构造新函数,对两个函数做差,构造新函数,对新函数求导,得到函数在正数范围上的单调性,求出最小值,最小值等于0,得到不等式.
解答:解:(I)设函数f(x)与函数g(x)的图象有公共点(x,y

由题意:
由②得x=a(其中x=-3a舍去)
代入到①中得

考虑到
上单调递减,
取得最大值
(II)设

∴F(x)在(0,a]上单调递减,在[a,+∞)上单调递增,
故F(x)≥F(a)=f(a)-g(a)=f(x)-g(x)=0,
即f(x)≥g(x)
点评:本题考查导数在求最值的应用,本题解题的关键是构造新函数,根据新函数的性质,得到要求的结论,注意本题的运算不要出错.
练习册系列答案
相关习题

科目:高中数学 来源:2009-2010学年重庆十一中高一(上)数学单元测试07(集合与函数)(解析版) 题型:选择题

已知函数的图象有公共点A,且点A的横坐标为2,则k( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2004年甘肃省高考数学试卷(文)(解析版) 题型:选择题

已知函数的图象有公共点A,且点A的横坐标为2,则k( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2004年贵州省高考数学试卷(文)(解析版) 题型:选择题

已知函数的图象有公共点A,且点A的横坐标为2,则k( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:安徽省2010届高三第三次质检(理) 题型:解答题

 

已知函数的图象有公共点,且在该点处的切线相同。

   (I)用a表示b,并求b的最大值;

   (II)求证:

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案