精英家教网 > 高中数学 > 题目详情
3.求曲线f(x)=2x在点(0,1)处的切线方程.

分析 求出函数的导数,求出切线的斜率,利用点斜式求解切线方程,

解答 解:曲线f(x)=2x,可得f′(x)=2xln2.
∴曲线y=2x在点P(0,1)处的切线的斜率为:k=2°ln2=ln2,
∴曲线y=2x在点P(0,1)处的切线的方程为:y-1=ln2(x-0),即y=xln2+1,
故答案为:y=xln2+1.

点评 本小题主要考查利用导数研究曲线上某点切线方程、直线方程的应用等基础知识,考查运算求解能力和化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.下列叙述正确的有①④(将你认为所有可能出现的情况的代号填入横线上).
①集合{0,1,2}的非空真子集有6个;
②集合A={1,2,3,4,5,6},集合B={y|y≤5,y∈N*},若f:x→y=|x-1|,则对应关系f是从集合A到集合B的映射;
③函数y=tanx的对称中心为(kπ,0)(k∈Z);
④函数f(x)对任意实数x都有f(x)=-$\frac{1}{f(x-2)}$恒成立,则函数f(x)是周期为4的周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)满足f(x+2)=f(x),当x∈[0,1]时.,f(x)=x,则当x∈[k,k+1](k∈Z)时,函数f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,-1),且($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$).求
(1)$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值;
(2)k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=x2-2bx+c的最小值为3,它的图象过点M(2,4),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设全集U=R,集合A={x|x<-2},集合B={x|x≥1}.求:
(1)A∪B;
(2)A∩B;
(3)∁UA;
(4)∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=xex+1在点(0,1)处的切线方程是(  )
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式:3${\;}^{{x}^{2}-2x-3}$<($\frac{1}{27}$)x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知lg2=a,lg3=b,则用a,b表示lg15为(  )
A.b-a+1B.b(a-1)C.b-a-1D.b(1-a)

查看答案和解析>>

同步练习册答案