精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

【答案】(1);(2)

【解析】

(1)根据两个集合的交集为,可知,即充要条件就是.(2)由(1)可知,要找充分不必要条件,即是在找一个值,都是符合题意的值.

(1)由MP={x|5<x≤8},得-3≤a≤5,因此MP={x|5<x≤8}的充要条件是-3≤a≤5;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有MP={x|5<x≤8};反之,MP={x|5<x≤8}未必有a=0,故a=0是MP={x|5<x≤8}的一个充分不必要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的新四大发明,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?

移动支付活跃用户

非移动支付活跃用户

总计

总计

100

(Ⅱ)把每周使用移动支付6次及6次以上的用户称为移动支付达人”.为了做好调查工作,决定用分层抽样的方法从“移动支付达人”中抽取6人进行问卷调查,再从这6人中选派2人参加活动求参加活动的2人性别相同的概率?

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆My轴相切,并且经过点

1)求圆M的方程;

2)过点作圆M的两条互垂直的弦ACBD,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实数根.

(1)求函数f(x)的解析式;

(2)当x∈[1,2]时,求f(x)的值域;

(3)若F(x)=f(x)-f(-x),试判断F(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且

(1)a , b的值;

(2)在区间上的最小值为,最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 + =1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:

(l)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.

查看答案和解析>>

同步练习册答案