精英家教网 > 高中数学 > 题目详情

【题目】数列满足是数列的前项和().

(1)设数列是首项和公比都为的等比数列,且数列也是等比数列,求的值;

(2)设,若恒成立,求的取值范围;

(3)设),若存在整数,且,使得成立,求的所有可能值.

【答案】1

2

3

【解析】

1)直接利用等比数列的定义和等比中项的应用求出结果.

2)利用累加法和恒成立问题的应用和赋值法的应用求出结果.

3)利用存在性问题的应用和赋值法的应用求出结果.

解:(1) 由条件得,即

,设等比数列的公比为

,又,则.

时,

满足题意,

故所求的的值为.

(2)当时,

以上个式子相加得,

,则

. 由知数列是递增数列,

,要使得恒成立,

则只需,即,则.

(3) 由条件得数列是以为首项,为公差的等差数列,

.

时,

时,

则当时,矛盾.

,即时,.

时,

即当时,,与矛盾.

,则

时,,解得

时,,解得.

综上得的所有可能值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体ABCDA1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQλBB1(λ≠0)

1)若λ,求APAQ所成角的余弦值;

2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和圆,抛物线的焦点为.

1)求的圆心到的准线的距离;

2)若点在抛物线上,且满足 过点作圆的两条切线,记切点为,求四边形的面积的取值范围;

3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是直线的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若的图象与直线交于两点,且,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ) 求曲线在点处的切线方程;

(Ⅱ) 讨论函数的单调性;

(Ⅲ) 设,当时,若对任意的,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为,记过圆锥轴的平面ABCD为平面与两个圆锥面的交线为ACBD),用平行于的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于ACBD,则双曲线E的离心率为(

A.B.C.D.2

查看答案和解析>>

同步练习册答案