精英家教网 > 高中数学 > 题目详情

【题目】已知点,直线,动点到点的距离等于它到直线的距离.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?

【答案】(Ⅰ)(Ⅱ)直线的方程为

【解析】

试题分析:)根据点P到点F的距离等于它到直线l的距离,利用抛物线的定义,可得点P的轨迹C是以F为焦点、直线x=-1为准线的抛物线,从而可求抛物线方程为;()假假设存在满足题设的直线m.设直线m与轨迹C交于A,B,由中点坐标公式可得,利用点差法求直线的斜率,从而可得结论

试题解析:1因点P到点F的距离等于它到直线l的距离,

所以点P的轨迹C是以F为焦点、直线x=-1为准线的抛物线

其方程为…………………4分

2)假设存在满足题设的直线.设直线与轨迹交于,

依题意,.

在轨迹,

,,.

,的中点不是,不合题意,

,即直线的斜率,

注意到点在曲线的张口内(或:经检验,直线与轨迹相交)

存在满足题设的直线

且直线的方程为:.…………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率分别时0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率?

(2)问参加这次测试的学生人数是多少?

(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥A-BOC中,OA底面BOC,OAB=OAC=30°,AB=AC=4,BC=,动点D在线段AB上.

(1)求证:平面COD平面AOB;

(2)当ODAB时,求三棱锥C-OBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数的单调区间及所有零点;

(2)设为函数图象上的三个不同点,且

.问:是否存在实数,使得函数在点处的切线与直线平行?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1)求该椭圆的标准方程;

2)过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为矩形,底面上一点,且平面.

(1)求的长度;

(2)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 上有一点列过点x轴上的射影是123+…+n=2n+1n-2.n∈N*)

(1)求数列{}的通项公式

(2)设四边形 的面积是,求

(3)在(2)条件下,求证 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇

函数,且相邻两对称轴间的距离为.

时,求的单调递减区间;

将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),

得到函数的图象.时,求函数的值域.

查看答案和解析>>

同步练习册答案