精英家教网 > 高中数学 > 题目详情
(2012•成都模拟)如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小;
(Ⅲ)求点A到平面CDE的距离.
分析:(Ⅰ)取BC中点G点,连接AG,FG,由F,G分别为DC,BC中点,知FG∥BD且FG=
1
2
BD,又AE∥BD且AE=
1
2
BD,故AE∥FG且AE=FG,由此能够证明EF⊥平面BCD.
(Ⅱ)取AB的中点O和DE的中点H,分别以OC、OB、OH所在直线为x、y、z轴建立如图空间直角坐标系,则C(
3
,0,0),D(0,1,2),E(0,-1,1),A(0,-1,0),
CD
=(-
3
,1,2)
ED
=(0,2,1)
.求出面CDE的法向量
n1
=(
3
,-1,2)
,(6分)面ABDE的法向量
n2
=(1,0,0)
,由此能求出二面角C-DE-A的大小.
(Ⅲ)由面CDE的法向量
n1
=(
3
,-1,2)
AE
=(0,0,1)
,利用向量法能求出点A到平面CDE的距离.
解答:解:(Ⅰ)取BC中点G点,连接AG,FG,
∵F,G分别为DC,BC中点,
∴FG∥BD且FG=
1
2
BD,又AE∥BD且AE=
1
2
BD,
∴AE∥FG且AE=FG,
∴四边形EFGA为平行四边形,则EF∥AG,
∵AE⊥平面ABC,AE∥BD,
∴BD⊥平面ABC,
又∵DB?平面BCD,
∴平面ABC⊥平面BCD,
∵G为 BC中点,且AC=AB,
∴AG⊥BC,∴AG⊥平面BCD,
∴EF⊥平面BCD.(4分)
(Ⅱ)取AB的中点O和DE的中点H,
分别以OC、OB、OH所在直线为x、y、z轴建立如图空间直角坐标系,
则C(
3
,0,0),D(0,1,2),E(0,-1,1),A(0,-1,0),
CD
=(-
3
,1,2)
ED
=(0,2,1)

设面CDE的法向量
n1
=(x,y,z),
n1
CD
=-
3
x+y+2z=0
n1
ED
=2y+z=0

n1
=(
3
,-1,2)
,(6分)
取面ABDE的法向量
n2
=(1,0,0)
,(7分)
由cos<
n1
n2
>=
n1
n2
|
n1
|•|
n2
|

=
3
(
3
)2+(-1)2+22×1
=
6
4

故二面角C-DE-A的大小为arc
6
4
.(8分)
(Ⅲ)由(Ⅱ),
面CDE的法向量
n1
=(
3
,-1,2)
AE
=(0,0,1)

则点A到平面CDE的距离
d=
|
AE
n1
|
|
n1
|
=
2
(
3
)2+(-1)2+22
=
2
2
.(12分)
点评:本题考查直线与平面垂直的证明,考查二面角的求法,考查点到平面的距离的求法.解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•成都模拟)设函数f(x)=-
13
x3
+2ax2-3a2x+b(常数a,b满足0<a<1,b∈R).
(1)求函数f(x)的单调区间和极值;
(2)若对任意的x∈[a+1,a+2],不等式|f'(x)|≤a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)定义:若平面点集A中的任一个点(x0,y0),总存在正实数r,使得集合B={(x,y)|
(x-x0)2+(y-y0)2
<r}⊆A
,则称A为一个开集,给出下列集合:
①{(x,y)|x2+y2=1};      
②{(x,y|x+y+2>0)};
③{(x,y)||x+y|≤6};     
{(x,y)|0<x2+(y-
2
)
2
<1}

其中是开集的是
②④
②④
.(请写出所有符合条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)向量
OA
=(2,0),
OB
=(2+2cosθ,2
3
+2sinθ)
,则向量
OA
OB
的夹角的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)已知函数f(x)=
3
sinx,g(x)=cos(π+x)
,直线x=a与f(x),g(x)的图象分别交于M,N两点,则|MN|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)在锐角△ABC中,已知5
.
AC
.
BC
=4|
.
AC
|•|
.
BC
|,设
m
=(sinA,sinB),
n
=(cosB,-cosA)且
m
n
=
1
5

求:(1)sin(A+B)的值;(2)tanA的值.

查看答案和解析>>

同步练习册答案