精英家教网 > 高中数学 > 题目详情

(本题满分14分)

已知函数(),.

(Ⅰ)当时,解关于的不等式:

(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;

(Ⅲ)若是使恒成立的最小值,对任意

试比较的大小(常数).

 

【答案】

(I) . (Ⅱ)这样的切线存在,且只有一条。

(Ⅲ)以

 =.

【解析】本试题主要是考查了导数在研究函数中的运用,以及不等式的求解,以及最值的研究。

(1)因为当时,不等式等价于,进而得到解集

(2)假设存在这样的切线,设其中一个切点

∴切线方程:将点T代入得到结论。

(3)恒成立,所以,构造函数运用导数求解最值得到证明。

(I)当时,不等式等价于,解集为.      3分

(Ⅱ)假设存在这样的切线,设其中一个切点

∴切线方程:,将点坐标代入得:

,即,        ①

法1:设,则.………………6分

在区间上是增函数,在区间上是减函数,

,注意到在其定义域上的单调性知仅在内有且仅有一根方程①有且仅有一解,故符合条件的切线有且仅有一条. 8分.

法2:令(),考查,则

从而增,减,增. 故

,而,故上有唯一解.

从而有唯一解,即切线唯一.

法3:

所以单调递增。 又因为,所以方程

有必有一解,所以这样的切线存在,且只有一条。

(Ⅲ)恒成立,所以

,可得在区间上单调递减,

.                       10分

.  令

注意到,即

所以

 =.              14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案