精英家教网 > 高中数学 > 题目详情

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;

方案二:不收管理费,每度0.58元.

1)求方案一收费(元)与用电量(度)间的函数关系;

2)老王家九月份按方案一交费35元,问老王家该月用电多少度?

3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?

【答案】12)老王家该月用电60度.(3)老王家用电量在范围内时,选方案一比方案二好.

【解析】

试题分析:1)分两种情况讨论即可;

2)通过分别令计算即得结论;

3)通过分别令计算即得结论.

试题解析:1)当时,

时,

2)当时,由,得(舍去),

时,,得

所以老王家该月用电60度.

3)设方案二收费,则

时,由,得,解得

时,由,得,解得

综上,,故老王家用电量在范围内时,选方案一比方案二好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图“月亮图”是由曲线构成,曲线是以原点为中点, 为焦点的椭圆的一部分,曲线是以为顶点, 为焦点的抛物线的一部分, 是两条曲线的一个交点.

(Ⅰ)求曲线的方程;

(Ⅱ)过作一条与轴不垂直的直线,分别与曲线依次交于四点,若的中点, 的中点,问: 是否为定值?若是求出该定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期和最大值;

(2)讨论的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式:

①C135﹣C71C64②C72C63+C73C62+C74C61+C75

③C135﹣C71C64﹣C65④C72C113

其中能成为N的算式是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)记的极小值为,求的最大值;

)若对任意实数恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是( )

①命题“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极小值;

(2)设函数,求函数的单调区间;

(3)若在区间上存在一点,使得成立,求的取值范围,(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

(2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

I)求单调递减区间;

II)已知分别为内角的对边,为锐角,,且恰是上的最大值,求的面积.

查看答案和解析>>

同步练习册答案