精英家教网 > 高中数学 > 题目详情

【题目】选修4﹣1:几何证明选讲
如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2 ,∠APB=30°.

(1)求∠AEC的大小;
(2)求AE的长.

【答案】
(1)解:连接AB,因为:∠APO=30°,且PA是⊙O的切线,

所以:∠AOB=60°;

∵OA=OB

∴∠AB0=60°;

∵∠ABC=∠AEC

∴∠AEC=60°.


(2)解:由条件知AO=2,过A作AH⊥BC于H,则AH=

在RT△AHD中,HD=2,∴AD= =

∵BDDC=ADDE,

∴DE=

∴AE=DE+AD=


【解析】(1)先连接AB,根据切线的性质以及已知条件得到:∠AOB=60°;再结合OA=OB以及∠ABC=∠AEC即可得到结论;(2)分两段,先根据直角三角形中的有关性质求出AD,再结合相交弦定理求出DE,二者相加即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,△ABC内接于圆O,D是 的中点,∠BAC的平分线分别交BC和圆O于点E,F.

(1)求证:BF是△ABE外接圆的切线;
(2)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率等于,P(2,3)、Q(2,﹣3)是椭圆上的两点.

(1)求椭圆C的方程;

(2)A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为(   )

A. 16 B. 6 C. 12 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=是定义在[-l,1]上的奇函数,且f()=

(1)确定函数f(x)的解析式;

(2)判断并用定义证明f(x)(-1,1)上的单调性;

(3)f(1-3m)+f(1+m)≥0,求实数m的所有可能的取值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.

(1)求证:AD⊥PB;

(2)已知点M是线段PC上,MC=λPM,且PA平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半径为2的球O内有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该四棱柱的侧面积之差是

查看答案和解析>>

同步练习册答案