精英家教网 > 高中数学 > 题目详情

【题目】某同学在研究函数时,给出下面几个结论:

①等式恒成立;

②函数的值域为

③若,则一定

④对任意的,若函数恒成立,则当时,

其中正确的结论是____________(写出所有正确结论的序号).

【答案】①②③

【解析】

①由函数是奇函数可判定①正确,②分别讨论和奇函数的性质可知②正确.③因为为增函数,故③正确.利用表达式恒成立转化为函数最值恒成立,再解不等式即可判定④错误.

①因为,定义域为,且

故函数为奇函数,

所以恒成立,故①正确.

②当时,,在为增函数.

时,.

因为为奇函数,,所以函数的值域为,故②正确.

③因为函数为增函数,

所以,则一定,故③正确.

④对于任意,数为增函数,.

要使恒成立,

,即.

因为,则

解得:.故④错.

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中米,,则这块花园的面积为______平方米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,记.

1)求b1b2的值;

2)证明:数列{bn}是等比数列;

3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.

(Ⅰ)若点的坐标为,求的值;

(Ⅱ)若点为线性约束条件所围成的平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,AB⊥平面PADAB∥CDPD=ADEPB的中点,FDC上的点且DF=ABPH△PAD边上的高.

1)证明:PH⊥平面ABCD

2)若PH=1AD=FC=1,求三棱锥E-BCF的体积;

3)证明:EF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.若的非空子集中奇数的个数大于偶数的个数,则称是“好的”.试求的所有“好的”子集的个数(答案写成最简结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,,沿对角线折起至,使得二面角,连结

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】恩格尔系数(记为)是指居民的食物支出占家庭消费总支出的比重.国际上常用恩格尔系数来衡量一个国家和地区人民生活水平的状况.联合国对消费水平的规定标准如下表:

家庭类型

贫穷

温饱

小康

富裕

最富裕

实施精准扶贫以来,根据对某山区贫困家庭消费支出情况(单位:万元)的抽样调查,2018年每个家庭平均消费支出总额为2万元,其中食物消费支出为1.2万元预测2018年到2020年每个家庭平均消费支出总额每年的增长率约是30%,而食物消费支出平均每年增加0.2万元,预测该山区的家庭2020年将处于( )

A.贫困水平B.温饱水平C.小康水平D.富裕水平

查看答案和解析>>

同步练习册答案