精英家教网 > 高中数学 > 题目详情

【题目】据气象中心观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度与时间的函数图像如图所示,过线段上一点作横轴的垂线梯形在直线左侧部分的面积即为内沙尘暴所经过的路程.

(1)当时,求的值;

(2)将变化的规律用数学关系式表示出来;

(3)若城位于地正南方向,且距650试判断这场沙尘暴是否会侵袭到城,如果会,在沙尘暴发生后多长时间它将侵袭到城?如果不会,请说明理由.

【答案】(1)24;(2)s;(3)沙尘暴发生30 h后将侵袭到N城.

【解析】试题分析:(1)先求出线段OA的解析式为v=4t,然后把t=10直接代入求出此时的速度,即可求出St)的值;(2)先分段求出速度v与时间t的函数函数关系,再分别乘以时间即可求得对应的函数St)的解析式;(3)先由分段函数的解析式以及对应的定义域可以求得其最大值,发现其最大值大于650,即可下结论会侵袭到N城,再把St=650代入即可求出对应的t

试题解析:解:(1)由图像可知,当t4时,v3×412

所以S×4×1224 km

2)当0≤t≤10时,S·t·3t

10<t≤20时,S×10×3030t10)=30t150

20<t≤35时,S×10×3010×30+(t20×30×t20×2t20)=

综上可知,

3)因为当t[010]时,Smax×102150<650

t∈1020]时,Smax30×20150450<650

所以当t2035]时,令,解得.因为20<t≤35,所以t30

故沙尘暴发生30 h后将侵袭到N城.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>0)的焦点在x轴上,且椭圆C的焦距为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2 . (Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[﹣1,m]时,值域为[﹣4,0],求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点.

(1)求证:PA⊥BD.

(2)求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,向量 .

(1)求函数的解析式,并求当时, 的单调递增区间;

(2)当时, 的最大值为5,求的值;

(3)当时,若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三人独立破译同一份密码.已知三人各自破译出密码的概率分别为 ,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●的个数是(
A.10
B.9
C.8
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+2.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在12件同类型的零件中有2件次品,抽取3次进行检验,每次抽取1件,并且取出后不再放回,若以ξ和η分别表示取到的次品数和正品数.

1求ξ的分布列、均值和方差;

2求η的分布列、均值和方差.

查看答案和解析>>

同步练习册答案