精英家教网 > 高中数学 > 题目详情

(本小题共16分)设函数.

(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;    

(Ⅲ)若函数在区间内单调递增,求的取值范围.


解析:

(Ⅰ),

             曲线在点处的切线方程为

(Ⅱ)由,得

      若,则当时,,函数单调递减,

时,,函数单调递增,

,则当时,,函数单调递增,

时,,函数单调递减,    

(Ⅲ)由(Ⅱ)知,若,则当且仅当,即时,函数内单调递增;

,则当且仅当,即时,函数内单调递增,    综上可知,函数在区间内单调递增时,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共16分)设函数.

(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;    

(Ⅲ)若函数在区间内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三下学期数学综合练习(1) 题型:解答题

(本小题共16分)已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点  在直线上.

(1)求椭圆的标准方程

(2)求以OM为直径且被直线截得的弦长为2的圆的方程;

(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N.求证:线段ON的长为定值,并求出这个定值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省姜堰市高三第一学期学情调研数学试卷 题型:解答题

(本小题共16分)

已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为. (1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值(2)设直线轴、轴分别交于点,求证:为定值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省姜堰市高三学情调查数学试卷 题型:解答题

(本小题共16分)

已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为.    

(1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值范围;

(2)设直线轴、轴分别交于点,求证:为定值.

 

查看答案和解析>>

同步练习册答案